单侧前庭毁损引起的中枢平衡代偿
作者:
基金项目:

国家自然科学基金面上项目(82071050)。


Central balance compensation induced by unilateral vestibular destruction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    单侧前庭毁损引起的平衡功能失调导致一系列参与平衡感知和调控的中枢神经核团都会发生相应的代偿性改变。这些参与维持平衡的中枢代偿性调节包括健侧前庭核与患侧前庭核之间的活动协调,视觉动眼系统的代偿性调节、小脑的代偿性改变、网状结构的信号协调,下橄榄核的代偿性调节、丘脑的代偿性丘觉、大脑皮层的平衡调控以及某些适应性行为的改变等。因此,单侧前庭毁损引起的中枢平衡代偿实际上是包含所有参与平衡感知调控的中枢神经核团来协同完成一个综合代偿性调节的复杂过程。

    Abstract:

    The balance dysfunction caused by unilateral vestibular destruction leads to corresponding compensatory changes in a series of central nerve nuclei involved in balance perception and regulation. The balance compensation includes the coordination of activities between the contralateral vestibular nucleus and the affected vestibular nucleus, the compensatory regulation of the visual eye movement system, the compensatory changes of the cerebellum, the signal coordination of the brainstem reticular formation, the compensatory regulation of the inferior olive nucleus, compensatory thalamus sensation, the balance regulation of the cerebral cortex, and certain adaptive behavior changes, etc. Therefore, central balance compensations induced by unilateral vestibular destruction are related to all central nerve nuclei involved in the regulation of balance perception, which coordinate to complete a complex process of comprehensive compensatory regulation.

    网友评论
    网友评论
    分享到微博
    发 布
    参考文献
    [1] 时海波.前庭代偿机制研究新进展及其临床意义[J]. 上海交通大学学报(医学版), 2016, 36(9):1346-1350.
    [2] D'Ascanio P, Arrighi P, Fascetti F, et al. Effects of unilateral labyrinthectomy on the norepinephrine content in forebrain and cerebellar structures of albino rats[J]. Arch Ital Biol, 2000,138(3):241-270.
    [3] Helmchen C, Klinkenstein J, Machner B, et al. Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation[J]. Ann N Y Acad Sci, 2009,1164:104-115.
    [4] Badalyan SA. Plastic reorganization in the cerebellothalamic system after partial deafferentation of the ventrolateral nucleus of the thalamus[J]. Neurosci Behav Physiol, 2005,35(1):43-47.
    [5] de Waele C, Vidal PP, Tran Ba Huy P, et al. Vestibular compensation. Review of the literature and clinical applications[J]. Ann Otolaryngol Chir Cervicofac, 1990,107(5):285-298.
    [6] He J, Yin S, Wang J, et al. Effectiveness of different approaches for establishing cisplatin-induced cochlear lesions in mice[J]. Acta Otolaryngol, 2009,129(12):1359-1367.
    [7] Zhou Y, Ding D, Kraus KS, et al.Functional and structural changes in the chinchilla cochlea and vestibular system following round window application of carboplatin[J]. Audiol Med, 2009,7(4):189-199.
    [8] Yu J, Ding D, Wang F, et al. Pattern of hair cell loss and delayed peripheral neuron degeneration in inner ear by a high-dose intratympanic gentamicin[J]. J Otol, 2014,9(3):126-135.
    [9] Fetter M. Acute unilateral loss of vestibular function[J]. Handb Clin Neurol, 2016,137:219-229.
    [10] Ris L, Godaux E. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig[J]. J Neurophysiol, 1998, 80(5):2352-2367.
    [11] Beraneck M, UnoA, Vassias I, et al. Evidence against a role of gap junctions in vestibular compensation[J]. Neurosci Lett, 2009,450(2):97-101.
    [12] Dieringer N, Precht W. Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system[J]. Exp Brain Res, 1979, 36(2):311-328.
    [13] Smith PF, Darlington CL, Curthoys IS.Vestibular compensation without brainstem commissures in the guinea pig[J]. Neurosci Lett, 1986,65(2):209-213.
    [14] Racz E, Gaal B, Kecskes S, et al. Molecular composition of extracellular matrix in the vestibular nuclei of the rat[J]. Brain Struct Funct, 2014,219(4):1385-1403.
    [15] Sadeghi SG, Minor LB, Cullen KE. Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss[J]. J Neurosci, 2012,32(42):14685-14695.
    [16] Fetter M, Zee DS, Proctor LR. Effect of lack of vision and of occipital lobectomy upon recovery from unilateral labyrinthectomy in rhesus monkey[J]. J Neurophysiol, 1988, 59(2):394-407.
    [17] Shinder ME, Perachio AA, Kaufman GD. VOR and Fos response during acute vestibular compensation in the Mongolian gerbil in darkness and in light[J]. Brain Res, 2005, 1038(2):183-197.
    [18] Kaga K.Vestibular compensation in infants and children with congenital and acquired vestibular loss in both ears[J]. Int J Pediatr Otorhinolaryngol, 1999,49(3):215-224.
    [19] Gonshor A, Jones GM. Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision[J]. J Physiol, 1976,256(2):381-414.
    [20] Gonshor A, Jones GM. Short-term adaptive changes in the human vestibulo-ocular reflex arc[J]. J Physiol, 1976,256(2):361-379.
    [21] Maioli C, Precht W, Ried S. Short- and long-term modifications of vestibulo-ocular response dynamics following unilateral vestibular nerve lesions in the cat[J]. Exp Brain Res, 1983,50(2-3):259-274.
    [22] Goto MM, Romero GG, Balaban CD. Transient changes in flocculonodular lobe protein kinase C expression during vestibular compensation[J]. J Neurosci, 1997,17(11):4367-4381.
    [23] Balaban CD, Romero GG. A role of climbing fibers in regulation of flocculonodular lobe protein kinase C expression during vestibular compensation[J]. Brain Res, 1998,804(2):253-265.
    [24] Kim HJ, Coker NJ, Henley CM. Polyamines increase in the brain stem and cerebellum following labyrinthectomy[J]. Am J Otol, 1997,18(2):214-222.
    [25] D'Ascanio P, Arrighi P, Pompeiano O. Fos-protein expression in noradrenergic locus coeruleus neurons after unilateral labyrinthectomy in the rat[J]. Arch Ital Biol, 1998,136(2):83-102.
    [26] Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum[J]. J Neurophysiol, 1976, 39(5):954-969.
    [27] Haddad GM, Friendlich AR, Robinson DA. Compensation of nystagmus after VIIIth nerve lesions in vestibulo-cerebellectomized cats[J]. Brain Res, 1977,135(1):192-196.
    [28] Aleisa M, Zeitouni AG, Cullen KE. Vestibular compensation after unilateral labyrinthectomy:normal versus cerebellar dysfunctional mice[J]. J Otolaryngol, 2007,36(6):315-321.
    [29] Furman JM, Balaban CD, Pollack IF. Vestibular compensation in a patient with a cerebellar infarction[J]. Neurology, 1997,48(4):916-920.
    [30] Li YX, Hashmoto T, Tokuyama W, et al. Spatiotemporal dynamics of brain-derived neurotrophic factor mRNA induction in the vestibulo-olivary network during vestibular compensation[J]. J Neurosci, 2001, 21(8):2738-2748.
    [31] Tsuji J, Murai N, Naito Y, et al. c-Fos expression in the mouse brainstem after unilateral labyrinthectomy[J]. Acta Otolaryngol Suppl, 2007,127(Sup 557):8-11.
    [32] Kaufman GD, Anderson JH, Beitz AJ. Brainstem Fos expression following acute unilateral labyrinthectomy in the rat[J]. Neuroreport, 1992,3(10):829-832.
    [33] Kaufman GD,Anderson JH, Beitz AJ. Hemilabyrinthectomy causes both an increase and a decrease in corticotropin releasing factor mRNA in rat inferior olive[J]. Neurosci Lett, 1994,165(1-2):144-148.
    [34] Zwergal A, Schlichtiger J, Xiong G, et al. Sequential[(18)F]FDG microPET whole-brain imaging of central vestibular compensation:a model of deafferentation-induced brain plasticity[J]. Brain Struct Funct, 2016,221(1):159-170.
    [35] Gunther L, Beck G, Xiong G, et al.N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus[J]. PLoS One, 2015,10(3):e0120891.
    [36] Smith PF. Vestibular-hippocampal interactions[J]. Hippocampus, 1997,7(5):465-471.
    [37] Azzena GB, Melis F, Caria MA, et al. The vestibular cortical projection during spinal decompensation[J]. Arch Ital Biol, 1986,124(1):15-26.
    [38] Di Bonito M, Boulland JL, Krezel W, et al. Loss of projections, functional compensation, and residual deficits in the mammalian vestibulospinal system of Hoxb1-deficient mice[J]. eNeuro, 2015,2(6):ENEURO.0096-15.2015.
    [39] Bense S, Bartenstein P, Lochmann M, et al. Metabolic changes in vestibular and visual cortices in acute vestibular neuritis[J]. Ann Neurol, 2004,56(5):624-630.
    [40] Kaufman GD, Anderson JH, Beitz AJ. Otolith-brain stem connectivity:evidence for differential neural activation by vestibular hair cells based on quantification of FOS expression in unilateral labyrinthectomized rats[J]. J Neurophysiol, 1993,70(1):117-127.
    [41] Kitahara T, Saika T, Takeda N, et al. Changes in Fos and Jun expression in the rat brainstem in the process of vestibular compensation[J]. Acta Otolaryngol Suppl, 1995, 520 Pt 2:401-404.
    [42] Cirelli C, Pompeiano M, D'Ascanio P, et al. c-fos expression in the rat brain after unilateral labyrinthectomy and its relation to the uncompensated and compensated stages[J]. Neuroscience, 1996,70(2):515-546.
    [43] Fukushima K. Corticovestibular interactions:anatomy, electrophysiology, and functional considerations[J]. Exp Brain Res, 1997,117(1):1-16.
    [44] Hong SK, Kim JH, Kim HJ, et al. Changes in the gray matter volume during compensation after vestibular neuritis:a longitudinal VBM study[J]. Restor Neurol Neurosci, 2014,32(5):663-673.
    引证文献
引用本文

丁大连,徐先荣,李鹏,张建辉,孙虹.单侧前庭毁损引起的中枢平衡代偿[J].中国耳鼻咽喉颅底外科杂志,2021,27(3):256-262

复制
分享
文章指标
  • 点击次数:159
  • 下载次数: 542
历史
  • 收稿日期:2020-11-17
  • 在线发布日期: 2021-07-05
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭