Nanopore测序揭示m6A修饰铁死亡相关基因在中晚期头颈部鳞状细胞癌中的表达及临床意义
作者:
基金项目:

福建省自然科学基金项目(2020J011281)。


Expressions and clinical significances of m6A-modified iron death-related genes in middle and advanced head and neck squamous cell carcinoma
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    目的 研究N6-甲基腺苷(m6A)修饰在中晚期头颈部鳞状细胞癌(HNSCC)的作用和基因相关通路,为头颈部HNSCC患者的个体化精准治疗提出新的观点及研究参考。方法 选取3对临床中晚期HNSCC患者的癌及其癌旁组织(6个样本)进行测序,从癌和癌旁组织的转录组、m6A相关差异基因中筛选出两者共同的差异基因,通过基因本体(GO)分析、pathway分析及蛋白相互作用(PPI)分析,找出其中的枢纽(hub)基因,随后对网络中的基因进行基因集变异分析(GSVA),从而得到m6A修饰影响的基因及通路。结果 从癌与癌旁组织的差异基因中筛选出96个转录组m6A相关的上调基因、159个m6A相关下调基因;信号通路分析发现PPAR通路、免疫相关通路下调,代谢通路上调;构建PPI后发现,CDK1呈现上调趋势,而DCN及ARG2均呈现下调趋势;GSVA分析发现PI3K/AKT信号通路在癌组织中上调;PPI中的hub基因共表达分析发现AGR2和CDK1在m6A调控下,与铁死亡相关基因联系很密切。结论 m6A修饰与FOXA1、RPL8、DNC、CDK1、ApoE、POSTN、YWHAZ、MMP13等铁死亡相关基因紧密相关,m6A修饰可能通过铁死亡相关基因影响免疫、代谢相关通路,从而在中晚期HNSCC中起重要作用。

    Abstract:

    Objective To study the role and gene-related pathways of N6-methyladenosine (m6A) modification in middle and advanced head and neck squamous cell carcinoma (HNSCC), and to propose new perspectives and research references for individualized and precise treatment of HNSCC patients.Methods Cancer and paracancerous tissues (6 samples) from 3 middle and advanced HNSCC patients were selected for sequencing, and the transcriptomes and m6A-related differential genes from the cancer and paracancerous tissues were screened to identify common differential genes shared by both, and the hub genes were identified through gene ontology (GO) analysis, pathway analysis, and protein-protein interaction (PPI) analysis, and then the network of the genes in the network were subsequently subjected to gene set variation analysis (GSVA) to obtain the genes and pathways affected by m6A modification.Results From the differential genes of cancer and paracancer tissues, 96 m6A-related up-regulated genes and 159 m6A-related down-regulated genes were screened out from the transcriptome. Signaling pathway analysis revealed that peroxisome proliferator-activated receptor (PPAR) pathway, immune-related pathway were down-regulated, and metabolic pathway was up-regulated. After constructing the PPI, the cell-cycle protein-dependent kinase 1 (CDK1) was up-regulated, and the decorin (DCN) and anterior gradient 2 (ARG2) were down-regulated. Gene set variation analysis (GSVA) revealed that the PI3K/AKT signaling pathway was up-regulated in cancer tissues. Coexpression analysis of hub genes in the PPIs revealed that AGR2 and CDK1 were very closely linked to iron death-related genes under the regulation of m6A.Conclusions m6A modification is closely associated with iron death-related genes such as FOXA1, ribosomal protein L8(RPL8), DNC, CDK1, apolipoprotein E(ApoE), Periostin (POSTN), YWHAZ, Matrix metalloproteinase-13(MMP13), etc. m6A modification may affect immune and metabolism-related pathways through iron death-related genes, and thus play an important role in middle and advanced HNSCC.

    网友评论
    网友评论
    分享到微博
    发 布
    参考文献
    [1] Liu YQ, Zou HY, Xie JJ, et al. Paradoxical roles of desmosomal components in head and neck cancer[J].Biomolecules, 2021, 11(6):914.
    [2] Chow LQM. Head and neck cancer[J]. N Engl J Med, 2020, 382(1):60-72.
    [3] Shen Y, Li X, Wang D, et al. COL3A1:Potential prognostic predictor for head and neck cancer based on immune-microenvironment alternative splicing[J]. Cancer Med, 2023, 12(4):4882-4894.
    [4] Terazawa K, Ohashi T, Shibata H, et al. Immune-modified Glasgow prognostic score:A new prognostic marker for head and neck cancer[J]. Head Neck, 2022, 44(11):2555-2563.
    [5] Karpathiou G, Vincent M, Dumollard JM, et al. PD-L1 expression in head and neck cancer tissue specimens decreases with time[J]. Pathol Res Pract, 2022, 237:154042.
    [6] Chen J, Lu T, Zhong F, et al. A Signature of N6-methyladenosine regulator-related genes predicts prognoses and immune responses for head and neck squamous cell carcinoma[J]. Front Immunol, 2022, 13:809872.
    [7] 李祖飞, 赵晓畅, 何帅.20种m6A甲基化调节基因与甲状腺乳头状癌的相关性分析[J].中国耳鼻咽喉颅底外科杂志, 2023, 29(2):57-64.
    [8] 李念燊, 韩杏倩, 何金阳, 等.基于N6-甲基腺苷相关长链非编码核糖核酸表达的喉鳞状细胞癌预后分析[J].中国耳鼻咽喉颅底外科杂志, 2023, 29(1):81-91.
    [9] Jin S, Li M, Chang H, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma[J]. Mol Cancer, 2022, 21(1):97.
    [10] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[J]. Anal Biochem, 1987, 162(1):156-159.
    [11] Knyazev A, Glushkevich A, Fesenko I. Direct RNA sequencing dataset of SMG1 KO mutant Physcomitrella (Physcomitrium patens)[J]. Data Brief, 2020, 33:106602.
    [12] De Coster W, D'Hert S, Schultz DT, et al. NanoPack:visualizing and processing long-read sequencing data[J]. Bioinformatics, 2018, 34(15):2666-2669.
    [13] Wang JR, Holt J, McMillan L, et al. FMLRC:Hybrid long read error correction using an FM-index[J]. BMC Bioinformatics, 2018, 19(1):50.
    [14] Li H. Minimap2:pairwise alignment for nucleotide sequences[J].Bioinformatics, 2018, 34(18):3094-3100.
    [15] Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
    [16] [Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing] [J]. Nat Biotechnol, 2016, 34(5):518-524.
    [17] Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes[J]. Cell Div, 2010, 5:11.
    [18] Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer:mechanisms and implications[J]. NPJ Precis Oncol, 2023, 7(1):58.
    [19] Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer[J]. Nat Rev Mol Cell Biol, 2022, 23(1):74-88.
    [20] Meng Q, Xu Y, Ling X, et al. Role of ferroptosis-related genes in coronary atherosclerosis and identification of key genes:integration of bioinformatics analysis and experimental validation[J]. BMC Cardiovasc Disord, 2022, 22(1):339.
    [21] Haneke K, Schott J, Lindner D, et al. CDK1 couples proliferation with protein synthesis[J]. J Cell Biol, 2020, 219(3):e201906147.
    [22] Mura M, Hopkins TG, Michael T, et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression[J]. Oncogene, 2015, 34(39):5025-5036.
    [23] Xie C, Huang L, Xie S, et al. LARP1 predict the prognosis for early-stage and AFP-normal hepatocellular carcinoma[J]. J Transl Med, 2013, 11:272.
    [24] Ye L, Lin ST, Mi YS, et al. Overexpression of LARP1 predicts poor prognosis of colorectal cancer and is expected to be a potential therapeutic target[J]. Tumour Biol, 2016, 37(11):14585-14594.
    [25] Xu Z, Xu J, Lu H, et al. LARP1 is regulated by the XIST/miR-374a axis and functions as an oncogene in non-small cell lung carcinoma[J]. Oncol Rep, 2017, 38(6):3659-3667.
    [26] Miao G, Zhuo D, Han X, et al. From degenerative disease to malignant tumors:Insight to the function of ApoE[J]. Biomed Pharmacother, 2023, 158:114127.
    [27] Dorafshan S, Razmi M, Safaei S, et al. Periostin:biology and function in cancer[J]. Cancer Cell Int, 2022, 22(1):315.
    [28] Park JM, Mau CZ, Chen YC, et al. A case-control study in Taiwanese cohort and meta-analysis of serum ferritin in pancreatic cancer[J]. Sci Rep, 2021, 11(1):21242.
    [29] Yun D, Wang X, Wang W, et al. A novel prognostic signature based on glioma essential ferroptosis-related genes predicts clinical outcomes and indicates treatment in glioma[J]. Front Oncol, 2022, 12:897702.
    [30] Walraven M, Sabrkhany S, Knol JC, et al. Effects of cancer presence and therapy on the platelet proteome[J]. Int J Mol Sci, 2021, 22(15):8236.
    [31] Zhang Y, Lv X, Chen L, et al. The role and function of CLU in cancer biology and therapy[J]. Clin Exp Med, 2023, 23(5):1375-1391.
    [32] Praharaj PP, Patra S, Mishra SR, et al. CLU (clusterin) promotes mitophagic degradation of MSX2 through an AKT-DNM1L/Drp1 axis to maintain SOX2-mediated stemness in oral cancer stem cells[J]. Autophagy, 2023, 19(8):2196-2216.
    [33] Rodríguez-Rivera C, Garcia MM, Molina-álvarez M, et al. Clusterin:Always protecting. Synthesis, function and potential issues[J]. Biomed Pharmacother, 2021, 134:111174.
    [34] You J, Han Y, Qiao H, et al. Hsa_circ_0063804 enhances ovarian cancer cells proliferation and resistance to cisplatin by targeting miR-1276/CLU axis[J]. Aging (Albany NY), 2022, 14(11):4699-4713.
    [35] Zhang X, Yu K, Ma L, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma[J]. Theranostics, 2021, 11(12):5650-5674.
    [36] Gan Y, Ye F, He XX. The role of YWHAZ in cancer:A maze of opportunities and challenges[J]. J Cancer, 2020, 11(8):2252-2264.
    [37] Zhao J, Fu X, Chen H, et al. G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer[J]. Br J Cancer, 2021, 124(2):425-436.
    [38] Yu CC, Li CF, Chen IH, et al. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis[J]. J Pathol, 2019, 248(4):476-487.
    [39] Mei J, Liu Y, Yu X, et al. YWHAZ interacts with DAAM1 to promote cell migration in breast cancer[J]. Cell Death Discov, 2021, 7(1):221.
    [40] Lage-Vickers S, Bizzotto J, Valacco MP, et al. The expression of YWHAZ and NDRG1 predicts aggressive outcome in human prostate cancer[J]. Commun Biol, 2021, 4(1):103.
    [41] Du G, Yu X, Chen Y, et al. MiR-1-3p suppresses colorectal cancer cell proliferation and metastasis by inhibiting YWHAZ-mediated epithelial-mesenchymal transition[J]. Front Oncol, 2021, 11:634596.
    [42] Jia J, Sun J, Wang W, et al. Long noncoding RNA MLK7-AS1 promotes non-small-cell lung cancer migration and invasion via the miR-375-3p/YWHAZ axis[J]. Front Oncol, 2021, 11:626036.
    [43] Yao X, Sun K, Yu S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis[J]. J Orthop Translat, 2020, 27:33-43.
    [44] Wang X, Liu Z, Peng P, et al. Astaxanthin attenuates osteoarthritis progression via inhibiting ferroptosis and regulating mitochondrial function in chondrocytes[J]. Chem Biol Interact, 2022, 366:110148.
    [45] Curtarelli RB, Gonçalves JM, Dos Santos LGP, et al. Expression of cancer stem cell biomarkers in human head and neck carcinomas:a systematic review[J]. Stem Cell Rev Rep, 2018, 14(6):769-784.
    [46] Kawata-Shimamura Y, Eguchi H, Kawabata-Iwakawa R, et al. Biomarker discovery for practice of precision medicine in hypopharyngeal cancer:a theranostic study on response prediction of the key therapeutic agents[J]. BMC Cancer, 2022, 22(1):779.
    [47] Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones[J]. Cell, 2023, 186(13):2748-2764.e22.
    [48] Zhang X, Sun F, Qiao Y, et al. TFCP2 is required for YAP-dependent transcription to stimulate liver malignancy[J]. Cell Rep, 2017, 21(5):1227-1239.
    [49] Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J] [published correction appears in Nature, 2022, 609(7929):E12]. Nature, 2017, 551(7682):639-643.
    [50] Lee JY, Nam M, Son HY, et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer[J]. Proc Natl Acad Sci U S A, 2020, 117(51):32433-32442.
    引证文献
引用本文

庄黎明,丁雅婷,蔡成福,叶辉,蔡耿明. Nanopore测序揭示m6A修饰铁死亡相关基因在中晚期头颈部鳞状细胞癌中的表达及临床意义[J].中国耳鼻咽喉颅底外科杂志,2023,29(5):60-70

复制
分享
文章指标
  • 点击次数:327
  • 下载次数: 313
历史
  • 收稿日期:2023-06-17
  • 在线发布日期: 2023-10-31
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭