计算流体力学在鼻科临床诊治中的应用进展
作者:
基金项目:

空军军医大学军事医学专题项目(2022ZZXM005)。


Progress in the application of computational fluid dynamics in clinical diagnosis and treatment of rhinology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    鼻腔鼻窦由于结构性变化导致的气流场改变会影响鼻的生理功能,然而对鼻腔气流场的定量研究一直存在困难。计算流体力学(CFD)的发展为研究鼻腔气流变化提供了可行的途径。基于数字化鼻腔模型的CFD技术已在正常鼻腔生理功能的研究、异常鼻腔结构的气流特征分析、手术疗效评估和虚拟手术以及鼻用药物研究等方面取得诸多成果,具有非常显著的优势。尽管CFD技术的临床应用还面临许多困难,随着计算机技术、人工智能的快速发展,其在鼻科临床诊疗领域将有广阔的发展空间。

    Abstract:

    The change of airflow field caused by structural changes in nasal cavity and paranasal sinuses will affect the physiological function of nose. However, it is always difficult to quantitatively study the airflow field in nasal cavity. The development of computational fluid dynamics (CFD) provides a feasible way to study the changes of nasal airflow. CFD technology based on digital nasal model has a very significant advantage, which has achieved many achievements in the study of normal nasal physiological function, the analysis of airflow characteristics of abnormal nasal structure, the evaluation of surgical curative effect, virtual surgery, and the research of nasal drugs. With the rapid development of computer technology and artificial intelligence, although the clinical application of CFD technology still faces many difficulties, it will have great development potential in nasal clinical application.

    网友评论
    网友评论
    分享到微博
    发 布
    参考文献
    [1] Patel R. Nasal Anatomy and Function[J]. Facial Plast Surg, 2017, 33(1): 3-8.
    [2] Letzel J, Darbinjan A, Hummel T. The nasal cycle before and after nasal septoplasty[J]. Eur Arch Otorhinolaryngol, 2022, 279(10): 4961-4968.
    [3] Ogle OE, Weinstock RJ, Friedman E. Surgical Anatomy of the Nasal Cavity and Paranasal Sinuses[J]. Oral Maxillofac Surg Clin North Am, 2012, 24(2): 155-166.
    [4] Skansing DB, Mandø M, Holte MB, et al. Assessment of nasal function by computational fluid dynamics[J]. Ugeskr Laeger, 2022, 184(5): V06210516.
    [5] Fomin VM, Vetlutsky VN, Ganimedov VL, et al. Air flow in the human nasal cavity[J]. J Appl Mech Tech Phy, 2010, 51(2): 233-240.
    [6] Faizal WM, Ghazali NNN, Khor CY, et al. Computational fluid dynamics modelling of human upper airway: A review[J]. Comput Methods Programs Biomed, 2020, 196: 105627.
    [7] Valero A. Position paper on nasal obstruction: Evaluation and treatment[J]. J Investig Allergol Clin Immunol, 2018, 28(2): 67-90.
    [8] Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose[J]. Eur Arch Otorhinolaryngol, 2004, 261(8):452-455.
    [9] Ottaviano G, Pendolino AL, Scarpa B, et al. Correlations between peak nasal inspiratory flow, acoustic rhinometry, 4-phase rhinomanometry and reported nasal symptoms[J]. J Pers Med, 2022, 12(9): 1513.
    [10] Clement PAR, Halewyck S, Gordts F, et al. Critical evaluation of different objective techniques of nasal airway assessment: a clinical review[J]. Eur Arch Otorhinolaryngol, 2014, 271(10): 2617-2625.
    [11] Spataro E, Most SP. Measuring nasal obstruction outcomes[J]. Otolaryngol Clin North Am, 2018, 51(5): 883-895.
    [12] Elad D, Liebenthal R, Wenig BL, et al. Analysis of air flow patterns in the human nose[J]. Med Biol Eng Comput, 1993, 31(6): 585-592.
    [13] Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity[J]. J Biomech Eng, 1995, 117(4): 429-441.
    [14] Leong SC,Chen XB,Lee HP,et al. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology[J]. Rhinology, 2010, 48(2):139-145.
    [15] Leite SHP, Jain R, Douglas RG. The clinical implications of computerised fluid dynamic modelling in rhinology[J]. Rhinology, 2019, 57(1): 2-9.
    [16] Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations[J]. Eur Arch Otorhinolaryngol, 2014, 271(9): 2349-2354.
    [17] El H, Palomo JM. Measuring the airway in 3 dimensions: A reliability and accuracy study[J]. Am J Orthod Dentofacial Orthop, 2010, 137(4): S50.e1-S50.e9.
    [18] Tretiakow D, Tesch K, Meyer-Szary J, et al. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method[J]. Eur Arch Otorhinolaryngol, 2021, 278(5): 1443-1453.
    [19] Aljawad H, Rüttgers M, Lintermann A, et al. Effects of the nasal cavity complexity on the pharyngeal airway fluid mechanics: A computational study[J]. J Digit Imaging, 2021, 34(5): 1120-1133.
    [20] Kimura S, Sakamoto T, Sera T, et al. Voxel-based modeling of airflow in the human nasal cavity[J]. Comput Methods Biomech Biomed Engin, 2019, 22(3): 331-339.
    [21] Berger M, Pillei M, Mehrle A, et al. Nasal cavity airflow: Comparing laser doppler anemometry and computational fluid dynamic simulations[J]. Respir Physiol Neurobiol, 2021, 283: 103533.
    [22] Berger M, Pillei M, Giotakis A, et al. Pre-surgery planning tool for estimation of resection volume to improve nasal breathing based on lattice Boltzmann fluid flow simulations[J]. Int J Comput Assist Radiol Surg, 2021, 16(4): 567-578.
    [23] Yu S, Liu Y, Sun X, et al. Influence of nasal structure on the distribution of airflow in nasal cavity[J]. Rhinology, 2008, 46(2): 137-143.
    [24] Tan J, Han D, Wang J, et al. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model[J]. Eur Arch Otorhinolaryngol, 2012, 269(3): 881-889.
    [25] 臧洪瑞, 刘迎曦, 张罗, 等. 健康成人60名鼻腔流体力学分析[J]. 中华耳鼻咽喉头颈外科杂志, 2013, 48(10): 814-817.
    [26] Dohare P, Bhondekar AP, Sharma A, et al. Influence of airflow dynamics on vortices in the human nasal cavity[J]. Eng Comput (Swansea), 2019, 36(9): 3164-3179.
    [27] Cherobin GB, Voegels RL, Pinna FR, et al. Rhinomanometry versus computational fluid dynamics: Correlated, but different techniques[J]. Am J Rhinol Allergy, 2021, 35(2): 245-255.
    [28] Hebbink RHJ, Wessels BJ, Hagmeijer R, et al. Computational analysis of human upper airway aerodynamics[J]. Med Biol Eng Comput, 2023, 61(2): 541-553.
    [29] 喜扬洋, 詹杰民, 史剑波, 等. 基于3D打印和CT三维重构数值模拟上呼吸道气流状态的研究方法[J]. 医用生物力学, 2020, 35(3): 289-295.
    [30] Shang Y, Inthavong K, Tu J. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity[J]. J Biomech, 2019, 85: 74-83.
    [31] Elad D, Wolf M, Keck T. Air-conditioning in the human nasal cavity[J]. Respir Physiol Neurobiol, 2008, 163(1-3): 121-127.
    [32] Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity[J]. Comput Biol Med, 2017, 86: 18-30.
    [33] Lintermann A, Meinke M, Schröder W. Fluid mechanics based classification of the respiratory efficiency of several nasal cavities[J]. Comput Biol Med, 2013, 43(11): 1833-1852.
    [34] Issakhov A, Zhandaulet Y, Abylkassymova A, et al. A numerical simulation of air flow in the human respiratory system for various environmental conditions[J]. Theor Biol Med Model, 2021, 18(1): 2.
    [35] 唐媛媛, 孙秀珍, 刘迎曦, 等. 腺样体肥大患儿鼻声反射联合上气道气流场生物力学数值模型的特征分析[J]. 中国耳鼻咽喉头颈外科, 2014, 21(8): 398-402.
    [36] Patel TR, Li C, Krebs J, et al. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics[J]. Int J Pediatr Otorhinolaryngol, 2018, 109: 180-184.
    [37] Shcherbakov DA, Kokareva VV, Cheremnykh NI, et al. CFD simulation study of aerodynamics in nasal cavity in a case of septal perforation[J]. Vestn Otorinolaringol, 2020, 85(1): 64-67.
    [38] 汪涛, 王珮华, 陈东, 等. 不同部位和大小的鼻中隔穿孔对鼻腔气流影响的数值模拟分析[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(3): 209-216.
    [39] Smith TL, Schlosser RJ, Mace JC, et al. Long-term outcomes of endoscopic sinus surgery in the management of adult chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2019, 9(8): 831-841.
    [40] Yamasaki A, Levesque PA, Bleier BS, et al. Improvement in nasal obstruction and quality of life after septorhinoplasty and turbinate surgery[J]. Laryngoscope, 2019, 129(7): 1554-1560.
    [41] Wang T, Chen D, Wang PH, et al. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis[J]. Braz J Med Biol Res, 2016, 49(9): e5182.
    [42] 王凯, 董明敏. 流体力学评估上呼吸道一期成形术治疗阻塞性睡眠呼吸暂停低通气综合征[J]. 现代预防医学, 2011, 38(5): 956-958, 960.
    [43] Lintermann A, Schröder W. A hierarchical numerical journey through the nasal cavity: From nose-like models to real anatomies[J]. Flow Turbul Combust, 2019, 102(1): 89-116.
    [44] 郭宇峰, 单雅敏, 蔡惠坤, 等. 计算机流体力学在模拟下鼻甲手术中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(4): 257-261, 266.
    [45] Tao F, Feng Y, Sun B, et al. Septoplasty effect on the enhancement of airflow distribution and particle deposition in nasal cavity: A numerical study[J]. Healthcare (Basel), 2022, 10(9): 1702.
    [46] Vanhille DL, Garcia GJM, Asan O, et al. Virtual surgery for the nasal airway[J]. JAMA Facial Plast Surg, 2018, 20(1): 63-69.
    [47] Burgos MA, Sanmiguel-Rojas E, Singh N, et al. DigBody®: A new 3D modeling tool for nasal virtual surgery[J]. Comput Biol Med, 2018, 98: 118-125.
    [48] Wofford MR, Kimbell JS, Frank-Ito DO, et al. A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery[J]. Rhinology, 2015, 53(1): 41-48.
    [49] Farzal Z, Basu S, Burke A, et al. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients[J]. Int Forum Allergy Rhinol, 2019, 9(7): 746-758.
    [50] Popper C, Martin H, Shah R, et al. Intranasal spray characteristics for best drug delivery in patients with chronic rhinosinusitis[J]. Laryngoscope, 2023, 133(5): 1036-1043.
    [51] Radulesco T, Meister L, Perrier P, et al. Computational fluid dynamics modeling of nasal obstruction and associations with patient-reported outcomes[J]. Plast Reconstr Surg, 2022, 150(5): 1112e-1113e.
    [52] Pirnar J, Dolenc-Grošelj L, Fajdiga I, et al. Computational fluid-structure interaction simulation of airflow in the human upper airway[J]. J Biomech, 2015, 48(13): 3685-3691.
    [53] 刘秋蕊, 赵宇. 人工智能技术在喉癌诊疗领域中的应用[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(5): 530-533.
    引证文献
引用本文

李亚奇,薛涛.计算流体力学在鼻科临床诊治中的应用进展[J].中国耳鼻咽喉颅底外科杂志,2024,30(4):38-43

复制
分享
文章指标
  • 点击次数:144
  • 下载次数: 391
历史
  • 收稿日期:2023-04-17
  • 在线发布日期: 2024-09-04
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭